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A study of solving Unconstrained Geometric Programming Problem and Its Application 
 

Abstract: 

Constrained Geometric Program is a type of mathematical optimization problem characterized by objective 

and constraint functions that have a special form.  In this article, a unconstrained Geometric Programming 

problem is defined in usual form with unrestricted exponents aij i=1,2,3,….n and j=1,2,3,….N (n ≤ N+1). An 

attempt is made to obtain an optimum solution of this model using derivative and matrix inversion method. An 

example is considered to illustrate the procedure. 
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Introduction: 

Duffin, Peterson, and Zener [2] published a book “Geometric Programming: Theory and Applications” that 

started the field of Geometric Programming as a branch of nonlinear optimization with many useful 

theoretical and computational properties of Geometric Programming, to a large extent the scope of linear 

programming applications and is naturally applied to several important nonlinear systems in science and 

engineering. Several important developments of Geometric Programming are in the area of mechanical and 

civil engineering, chemical engineering, probability and statistics, finance and economics , control theory, 

circuit design, information technology, coding and signal processing, wireless networking, etc.  took place in 

the late 1960s and 1970s. There are several books on nonlinear optimization that have a section on Geometric 

Programming, e.g., M. Avriel, [5], C. S. Beightler  [1], G. Hadley [4], Taha [6], etc. However, many researchers 

felt that most of the theoretical, algorithmic and application aspects of Geometric Programming had been 

exhausted by the early 1980’s, the period of 1980–98 was relatively quiet. After the revolution in the 

electronic field, over the last few years, Geometric Programming started to receive renewed attention from 

the operations research community. 

R. Duffin and C. Zener  [3], have defined unconstrained Geometric Programming in the following 

manner: 
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Here it is assumed that the coefficient 0jc   and N is finite. The exponents 
ija  are unrestricted in sign i.e. it 

may be positive or negative. The function ( )f x  takes the form of a polynomial, except that the exponents 
ija

may be negative. 

Mathematical Procedure: 

Consider the Geometric Programming problem as: 
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This problem will be considered as the primal problem. Here ( )f x  is in the polynomial form and it is assumed 

that all variables ix  are strictly positive so that the region for which 0ix   represents the infeasible solution 

space. The requirement 0ix   plays an essential role in the derivation of the results. 

For minimum value of the objective function, the first order partial derivative of z  must be zero, now 

differentiate  z  with respect to kx
 (k=1,2,3,…..,n) 
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Since, each 
0ix 
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Let  
*z  be the minimum value of  .z  It can be easily seen that 

* 0,z   since each 
* 0kx 

 and z  is  a polynomial 

defined as 
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Which shows that  
0jy 

 and 
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Thus the value of jy
 represents the relative combination of the jth term ju

 to the optimum value of the 

objective function 
*.z  

Now the necessary conditions can be written as  
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These conditions [7] and [8] are known as orthogonality and normality conditions. By using matrix inversion 

method, these conditions will give a unique solution for jy
, if (n+1) = N and  all the equations are independent. 

If N > (n+1) then the problem becomes more complex because the values of jy
 are not unique. However, it is 

possible to determine jy
 uniquely for the purpose of minimizing .z  

Now, suppose that 
*

jy
 are the unique values determined from the equations given in the results [7] and [8]. 

These values are used to determined the values of 
*z  and 

*

kx
 for 1,2,3,....i n  as under, 

Consider, 
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Thus, the value of 
*z  is determined from result [13] as soon as all 

*

jy
 are determined. 

Now, for known values of 
*

jy
 and 

*z the value of 
*

ju
 can be determined from 

* * *

j ju y z 
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 * *
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 simultaneously solution of these equations should give 

* 1,2,3,... .jx for i n
 

The procedure described hare shows that the solution to the original polynomial z  can be transformed in to 

the solution of a set of linear equations in 
.jy
 Observed that all 

*

jy
 are determined from the necessary 

conditions for a minimum. However , it can be shown that, these conditions are also sufficient. 

Notes: 

 The proof under the given restriction on z is given in Beightler [1]. 

The variables jy
 actually defined as the dual variables associated with the primal problem. These relationship 

can be explained as under. 
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 Now, consider the following function 

  1

jy
N

j

j j

u
w

y

 
   

 


       [15] 



KCG- Portal of Journals 
 

Page 5  

 

  

1

1

j

ij

y
n

a

j iN
i

j j

c x

w
y





 
 
 
 
 
 




       [16] 

  1

jy
N

j

j j

c
w

y

 
   

 


       [17] 

Since, 1
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 and 

0jy 
 by using Cauchy’s inequality, it can be said that .w z  

The function w  with its variables 1 2 3, , ,......., ,Ny y y y  defined as the dual to the primal problem. Since w

represents the lower bound on z and since z is associated with the minimization problem, it follows by 

maximizing w that  

 

* *

j j

Max Min
w w z z

y x
  

     [18] 

This means that the maximum value of 
*w w  over the values of 

, 1,2,3,.....jy j N
 is equal to the minimum 

values of 
*z z  over the values of  , 1,2,3,.....ix i n  

Application to Hypothetical Problem: 

Consider the following problem of Geometric Programming; 

2 3 1 3 1 2

1 2 3

1
2 3 4Minimise z x x x x x x

x x x
   

 

subject to the condition that all variables have positive values i.e. 1 2 3, , 0x x x 
 

For solving the above problem let us first consider the given function as, 

31 32 13 23 33 3411 21 12 22 14 24
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1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 4

1 1 2 3 2 1 2 3 3 1 2 3 4 1 2 3
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Then by comparison, following matrices are obtained. 
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Here 1,2,3i   and 1,2,3,4j   so the case in which N = (n+1) is to be considered.  Using orthogonality and 

normality conditions  
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Following equations are obtained 
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Now, by using matrix inversion method, 
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This is a n unique solution given as 
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From the equation 
* * *

j ju y z 
 it can be deduced that, 

1 2 3 42.8332, 1.4166, 1.4166, 1.4166,u u u u     

Which will gives the optimum solution to the primal problem as under 

* * * *

1 2 30.498, 0.747, 0.948, 7.083.x x x and z     
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